## COMBINING CRITERIA FOR THE DETECTION OF INCORRECT ENTRIES OF NON-NATIVE SPEECH

## IN THE CONTEXT OF FOREIGN LANGUAGE LEARNING

Luiza Orosanu, Denis Jouvet, Dominique Fohr, Irina Illina , Anne Bonneau Speech Group, LORIA (Inria, CNRS, Universite de Lorraine) Nancy, France

## Entry classifier

- Define the training data set $\mathrm{D}=\left\{\overline{\mathrm{X}}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right\}, \mathrm{i}=1, \ldots, \mathrm{~N}$ where $\triangleright \overline{\mathrm{X}}_{\mathrm{i}}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}\right\}$ is the vector containing k comparison criteria $\triangleright \mathrm{y}_{\mathrm{i}}=1$ (correct entry) or 0 (incorrect entry)
$\triangleright \mathrm{N}=$ the number of entries within the training data set
- Compute an entry's probability of being correct (logistic regression)

$$
\mathrm{f}(\overline{\mathrm{X}})=\frac{1}{1+\exp \left(-\left(\alpha_{0}+\alpha_{1} \mathrm{x}_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{\mathrm{k}} \mathrm{x}_{\mathrm{k}}\right)\right)}
$$

- Estimate the $\alpha$ parameters by minimizing the error function $E=-\sum_{i=1}^{N}\left(y_{i} \cdot \ln \left(f\left(\bar{X}_{i}\right)\right)+\left(1-y_{i}\right) \cdot \ln \left(1-f\left(\bar{X}_{i}\right)\right.\right.$
- Evaluate the classifier's performance
$\triangleright$ compute error rates for various values of a $0 \leq \sigma \leq 1$ threshold
$\triangleright$ if $f(\overline{\mathrm{X}})>\sigma$ then the entry represented by the $\overline{\mathrm{X}}$ criteria is accepted
$\triangleright$ False Acceptance FA $=\frac{\text { incorrect entries wrongly rejected }}{\text { incorrect entries }}$
$\triangleright$ False Rejection $\mathrm{FR}=\frac{\text { correct entries wrongly rejected }}{\text { correct entries }}$
$\triangleright$ F-measure $\frac{1}{\mathrm{~F}}=\frac{1}{2}\left(\frac{1}{1-\mathrm{FA}}+\frac{1}{1-\mathrm{FR}}\right)$
Experimental setup
- Non-native corpora
$\triangleright$ INTONALE Project
$\triangleright \sim 800$ English sentences
$\triangleright 34$ French speakers ( 29 women, 5 men)
$>50 \%$ for training, $50 \%$ for testing (results displayed on poster)
- Native corpora
$\triangleright$ INTONALE Project
$\triangleright \sim 1500$ English sentences
$\triangleright 22$ English speakers ( 15 women, 7 men)
$\triangleright 50 \%$ for training, $50 \%$ for testing (results presented in the paper)
- HMM toolkit: HTK
- Acoustic features: MFCC (12 MFCC coefficients + temporal derivates + the logarithm of the energy per frame)
- Acoustic models: HMM (16 gaussian mixtures)
- Two lexicons:
$\triangleright$ native (CMU)
$\triangleright$ non-native (includes non-native variants)

Impact of the lexicon and the training data set


Impact of the comparison criteria


- comparison of the forced alignment with both phoneme loop and word loop alignments
- all 10 comparison criteria (5 criteria per comparison)


## Overall performance



- distance: measures the difference between the original correct transcription (which should be accepted) and the modified transcription (which should be rejected)
- the F-measure gets greater than $80 \%$ when difference over 6 phonemes


## Conclussions

- Our experiments have shown that it is important to: $\triangleright$ train the decision function on non-native data $\triangleright$ use non-native pronunciations in the lexicon $\triangleright$ combine all 10 comparison criteria
- The optimal setting leads to a classifier able to detect incorrect entries when more than 6 phonemes are wrong

