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Context

Deafness

∗ for children: can delay language development and cognitive skills

∗ for adults: difficulty to find an employment, exercise and keep it

∗ for all: social isolation

A speech recognition system adapted to deaf people’s needs

∗ improve communication between deaf people and their entourage

∗ tool of socialization and/or integration in the workplace
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Considerations

Why consider a portable solution ?

∗ could be used anywhere & anytime

∗ could give real-time information to its owner

Constraints on considering an embedded device

∗ limited memory size

∗ limited computational power

2/18



Considerations

Why consider a portable solution ?

∗ could be used anywhere & anytime

∗ could give real-time information to its owner

Constraints on considering an embedded device

∗ limited memory size

∗ limited computational power

2/18



Summary

1 Context and Considerations

2 Methodology

3 Experiments and results

4 Conclusion



Methodology

Objective

∗ find the best compromise between

{
computational cost
usability of results

Approaches

∗ always use the same acoustic units

∗ evaluate 3 different linguistic units

⇒ different vocabularies & different language models

Acoustic unit Linguistic unit
phoneme

phoneme syllable
word
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Comparison of linguistic units
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Comparison of linguistic units

phonemes

∗ vocabulary : < 40 phonemes for French

∗ 3-gram language model : < 1 MB

Lexicon entries
au ⇒ au
b ⇒ b
ge ⇒ ge

syllables

∗ vocabulary : ∼ 16,000 syllables

∗ 3-gram language model : < 10 MB

au s ⇒ au s
b l au ⇒ b l au
o r ⇒ o r

words

∗ vocabulary : ∼ 97,000 words

∗ 3-gram language model: > 1 GB

absent ⇒ a b s an
combiner ⇒ k on b i n e
libre ⇒ l i b r
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Syllables

Setup for defining the syllables

∗ the training corpora is entirely phonetized (by forced alignment)

∗ the sequence of phonemes is processed by the syllabification tool

Rules of syllabification [Bigi et al,2010]

∗ a syllable contains a single vowel (V)

∗ a pause designates a syllable’s boundary

6/18



Syllables

Setup for defining the syllables

∗ the training corpora is entirely phonetized (by forced alignment)

∗ the sequence of phonemes is processed by the syllabification tool

Rules of syllabification [Bigi et al,2010]

∗ a syllable contains a single vowel (V)

∗ a pause designates a syllable’s boundary

[Bigi et al.,2010] Bigi, B., Meunier, C., Bertrand, R. and Nesterenko, I., ”Annotation automatique en
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Setup for defining the syllables

∗ the training corpora is entirely phonetized (by forced alignment)

∗ the sequence of phonemes is processed by the syllabification tool

Rules of syllabification [Bigi et al,2010]

∗ a syllable contains a single vowel (V)

∗ a pause designates a syllable’s boundary

Sequence of phonemes Split position Resulting syllables
VV 0 V V

VxV 0 V xV
VxxV 1 Vx xV

VxxxV 2 Vxx xV

[Bigi et al.,2010] Bigi, B., Meunier, C., Bertrand, R. and Nesterenko, I., ”Annotation automatique en

syllabes d’un dialogue oral spontané”, Journées d’Étude de la Parole, 2010
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Syllables

Example

ce qui s’ est passé c’ est que (...)
s k i s e p a s e s e k ← forced alignment

s k i s e p a s e s e k ← syllables
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Syllables

Example

ce qui s’ est passé c’ est que (...)
s k i s e p a s e s e k ← forced alignment

s k i s e p a s e s e k ← syllables

⇒ The syllabification tool creates syllables and pseudo-syllables, which

∗ take into account the liaison & reduction events

∗ are consistant throughout the entire training data
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Syllables

Reduce the number of (pseudo-)syllables by applying two filters

∗ a maximum number of phonemes per syllable
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Syllables

Reduce the number of (pseudo-)syllables by applying two filters

∗ a maximum number of phonemes per syllable
∗ a minimum number of occurrences in the training data

⇒ create several different lists of syllables, by applying different
thresholds for each filter
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Experiments

use a single type of acoustic unit

∗ the phoneme

use three different linguistic units (⇒ diffent vocabularies & LMs)

∗ the phoneme
∗ the syllable
∗ the word

test them on two French speech corpora

study their phonetic decoding performance (PER)

LM = Language model

PER = Phonemes Error Rate
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Data for Acoustic training

Train phonetic acoustic models:

∗ ESTER2 train set

∗ ETAPE train set

∗ EPAC train set

⇒ 300h
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Data for Acoustic training

Train phonetic acoustic models:

∗ ESTER2 train set

∗ ETAPE train set

∗ EPAC train set

⇒ 300h

ESTER2 & EPAC
∗ French broadcast news, collected from radio channels

∗ prepared speech, plus interviews

ETAPE
∗ debates collected from various radio and TV channels

∗ spontaneous speech
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Data for LM training

phoneme-based and syllable-based LM
→ training from phonetic transcription

∗ ESTER2 train set

∗ ETAPE train set

∗ EPAC train set

⇒ 12 million phonemes

⇒ 6 million syllables
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Data for LM training

phoneme-based and syllable-based LM
→ training from phonetic transcription

∗ ESTER2 train set

∗ ETAPE train set

∗ EPAC train set

⇒ 12 million phonemes

⇒ 6 million syllables

word-based LM
→ training from textual data

∗ newspaper data

∗ radio broadcast shows

∗ French Gigaword corpus

∗ web sources

⇒ more than 1.5 billion words

11/18



Data for Evaluation

Test on:

∗ ESTER2 development set
(prepared speech)

⇒ 142,000 phonemes
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∗ ESTER2 development set
(prepared speech)

⇒ 142,000 phonemes

∗ ETAPE development set
(spontaneous speech)

⇒ 263,000 phonemes
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Configuration

SRILM tools
∗ build statistical Language Models

MFCC acoustic analysis
∗ compute 13 MFCC parameters per frame

Sphinx3 tools
∗ train phonetic acoustic models

⇒ Context dependent HMM acoustic models
64 Gaussian mixtures

7500 senones

adapted Male/Female

∗ decode audio signals
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Results on the syllable-based LMs: filter by a maximum number of ph/syl
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Results on the syllable-based LMs: filter by a minimum number of occurrences
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Overall results
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Conclusion

phonetic n-gram language model
⇒ does not use much memory (< 1MB), nor computational power

⇒ does not give good results neither

{
∼ 34% PER ESTER2
∼ 38% PER ETAPE

syllabic n-gram language models
⇒ most frequent syllables → limited-size lexicon & LM (< 10MB)

⇒ performance only 4% worse than the LVCSR

{
∼ 16% PER ESTER2
∼ 22% PER ETAPE

word n-gram language model (LVCSR)

⇒ gives the best results

{
∼ 12% PER ESTER2
∼ 18% PER ETAPE

⇒ uses a lot of memory (> 1GB) and computational power

LM = Language model

PER = Phonemes Error Rate
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Future work

find the best way of presenting the recognized information

∗ phonemes
∗ syllables
∗ words or combinations
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Thank you
for your attention !
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