Comparison of approaches for an efficient phonetic decoding

Luiza Orosanu and Denis Jouvet

{luiza.orosanu, denis.jouvet}@loria.fr

Speech Group, LORIA Inria, Villers-les-Nancy, F-54600, France

August 27, 2013

This study is part of the **RAPSODIE project** (http://erocca.com/rapsodie) and has received support from the "Conseil Régional de Lorraine" and from the "Région Lorraine" (FEDER)

1 Context and Considerations

2 Methodology

3 Experiments and results

4 Conclusion

Context

Deafness

- * for children: can delay language development and cognitive skills
- * for adults: difficulty to find an employment, exercise and keep it
- * for all: social isolation

Context

Deafness

- * for children: can delay language development and cognitive skills
- * for adults: difficulty to find an employment, exercise and keep it
- * for all: social isolation
- A speech recognition system adapted to deaf people's needs
 - * improve communication between deaf people and their entourage
 - * tool of socialization and/or integration in the workplace

• Why consider a **portable solution** ?

- * could be used anywhere & anytime
- * could give real-time information to its owner

• Why consider a **portable solution** ?

- * could be used anywhere & anytime
- * could give real-time information to its owner

• Constraints on considering an embedded device

- * limited memory size
- * limited computational power

2 Methodology

3 Experiments and results

4 Conclusion

• Objective

* find the best compromise between { computational cost usability of results

Objective

* find the best compromise between { computational cost usability of results

• Approaches

- * always use the same acoustic units
- * evaluate 3 different linguistic units

 \Rightarrow different vocabularies & different language models

Acoustic unit	Linguistic unit
	phoneme
phoneme	syllable
	word

Comparison of linguistic units

• phonemes

- * vocabulary : < 40 phonemes for French
- $\ast\,$ 3-gram language model : < 1~MB

Lexicon entries

 $\begin{array}{l} \mathsf{au} \Rightarrow \mathsf{au} \\ \mathsf{b} \Rightarrow \mathsf{b} \\ \mathsf{ge} \Rightarrow \mathsf{ge} \end{array}$

ophonemes

- * vocabulary : < 40 phonemes for French
- * 3-gram language model : < 1 MB

Lexicon entries

 $\begin{array}{l} \mathsf{au} \Rightarrow \mathsf{au} \\ \mathsf{b} \Rightarrow \mathsf{b} \\ \mathsf{ge} \Rightarrow \mathsf{ge} \end{array}$

words

- * vocabulary : \sim 97,000 words
- * 3-gram language model: > 1 GB

 $absent \Rightarrow a b s an$ $combiner \Rightarrow k on b i n e$ $libre \Rightarrow l i b r$

Comparison of linguistic units

phonemes

- * vocabulary : < 40 phonemes for French
- * 3-gram language model : < 1 MB

• syllables

- * vocabulary : \sim 16,000 syllables
- * 3-gram language model : < 10 MB

words

- * vocabulary : \sim 97,000 words
- * 3-gram language model: > 1 GB

Lexicon entries

$au \Rightarrow au$
$b\Rightarrowb$
$ge \Rightarrow ge$

 $au_s \Rightarrow au s$ $b_l_au \Rightarrow b | au$ $o_r \Rightarrow o r$

 $\begin{array}{l} \text{absent} \Rightarrow \text{a b s an} \\ \text{combiner} \Rightarrow \text{k on b i n e} \\ \text{libre} \Rightarrow \text{l i b r} \end{array}$

Syllables

• Setup for defining the syllables

- * the training corpora is entirely **phonetized** (by forced alignment)
- * the sequence of phonemes is processed by the syllabification tool

Syllables

• Setup for defining the syllables

- * the training corpora is entirely **phonetized** (by forced alignment)
- * the sequence of phonemes is processed by the syllabification tool

• Rules of syllabification [Bigi et al,2010]

- * a syllable contains a single vowel (\vee)
- * a pause designates a syllable's boundary

[Bigi et al.,2010] Bigi, B., Meunier, C., Bertrand, R. and Nesterenko, I., "Annotation automatique en syllabes d'un dialogue oral spontané", Journées d'Étude de la Parole, 2010

Syllables

• Setup for defining the syllables

- * the training corpora is entirely **phonetized** (by forced alignment)
- * the sequence of phonemes is processed by the syllabification tool
- Rules of syllabification [Bigi et al,2010]
 - * a syllable contains a single vowel (V)
 - * a pause designates a syllable's boundary

Sequence of phonemes	Split position	Resulting syllables	
VV	0	V V	
VxV	0	V xV	
VxxV	1	Vx xV	
VxxxV	2	Vxx xV	

[Bigi et al.,2010] Bigi, B., Meunier, C., Bertrand, R. and Nesterenko, I., "Annotation automatique en syllabes d'un dialogue oral spontané", Journées d'Étude de la Parole, 2010

Example ce qui s' est passé c' est que (...) s k i s e p a s e s e k ← forced alignment s_k_i s_e p_a s_e_k ← syllables

- \Rightarrow The syllabification tool creates syllables and pseudo-syllables, which
 - * take into account the liaison & reduction events
 - * are consistant throughout the entire training data

Reduce the number of (pseudo-)syllables by applying two filters
 * a maximum number of phonemes per syllable

• Reduce the number of (pseudo-)syllables by applying two filters

* a minimum number of occurrences in the training data

Reduce the number of (pseudo-)syllables by applying two filters
 * a maximum number of phonemes per syllable

* a minimum number of occurrences in the training data

 \Rightarrow create several different **lists of syllables**, by applying different thresholds for **each filter**

- Context and Considerations
- 2 Methodology
- Experiments and results

- use a single type of acoustic unit
 - * the phoneme
- use three different linguistic units (\Rightarrow diffent vocabularies & LMs)
 - * the phoneme
 - * the syllable
 - \ast the word
- test them on two French speech corpora
- study their phonetic decoding performance (PER)

LM = Language model

 $[\]mathsf{PER}=\mathsf{Phonemes}\;\mathsf{Error}\;\mathsf{Rate}$

Data for Acoustic training

• Train phonetic acoustic models:

- * ESTER2 train set
- * ETAPE train set
- * EPAC train set

 \Rightarrow 300h

Data for Acoustic training

• Train phonetic acoustic models:

*	ESTER2 train set		
*	ETAPE train set	\Rightarrow	300h
*	EPAC train set		

ESTER2 & EPAC	*	French broadcast news, collected from radio channels prepared speech, plus interviews
ΕΤΑΡΕ	*	debates collected from various radio and TV channels spontaneous speech

Data for LM training

o phoneme-based and syllable-based LM

 \rightarrow training from phonetic transcription

- * ESTER2 train set
- * ETAPE train set
- * EPAC train set

- $\Rightarrow 12 \text{ million phonemes}$ $\Rightarrow 6 \text{ million syllables}$

Data for LM training

o phoneme-based and syllable-based LM

 \rightarrow training from phonetic transcription

- * ESTER2 train set
- **FTAPE** train set *
- * FPAC train set

- \Rightarrow 12 million phonemes \Rightarrow 6 million syllables

word-based LM

 \rightarrow training from textual data

- newspaper data *
- * radio broadcast shows
- * French Gigaword corpus
- * web sources

 \Rightarrow more than 1.5 billion words

Data for Evaluation

• Test on:

* ESTER2 development set (prepared speech)

 \Rightarrow 142,000 phonemes

Data for Evaluation

• Test on:

* ETAPE development set (spontaneous speech) \Rightarrow 142,000 phonemes

$$\Rightarrow$$
 263,000 phonemes

Configuration

SRILM tools

 \ast build statistical Language Models

Configuration

• SRILM tools

* build statistical Language Models

• MFCC acoustic analysis

* compute 13 MFCC parameters per frame

SRILM tools

* build statistical Language Models

MFCC acoustic analysis

* compute 13 MFCC parameters per frame

Sphinx3 tools

* train phonetic acoustic models

 \Rightarrow Context dependent HMM acoustic models

64 Gaussian mixtures 7500 senones adapted Male/Female

* decode audio signals

Overall results

ESTER2 : prepared speech

ETAPE : spontaneous speech

- Context and Considerations
- 2 Methodology
- 3 Experiments and results

• phonetic n-gram language model

 $\Rightarrow\,$ does not use much memory (< 1MB), nor computational power

$$\Rightarrow$$
 does not give good results neither $\left\{ \begin{array}{c} \sim 34\% \ {\sf PER} \ {\sf ESTER2} \\ \sim 38\% \ {\sf PER} \ {\sf ETAPE} \end{array} \right.$

LM = Language model

 $[\]mathsf{PER}=\mathsf{Phonemes}\;\mathsf{Error}\;\mathsf{Rate}$

• phonetic n-gram language model

 $\Rightarrow\,$ does not use much memory (< 1MB), nor computational power

$$\Rightarrow$$
 does not give good results neither $\left\{ \begin{array}{c} \sim 34\% \ {\sf PER} \ {\sf ESTER2} \\ \sim 38\% \ {\sf PER} \ {\sf ETAPE} \end{array} \right.$

• word n-gram language model (LVCSR) \Rightarrow gives the best results $\begin{cases} \sim 12\% \text{ PER ESTER2} \\ \sim 18\% \text{ PER ETAPE} \end{cases}$

 $\Rightarrow~$ uses a lot of memory (> 1GB) and computational power

LM = Language model

PER = Phonemes Error Rate

• phonetic n-gram language model

 $\Rightarrow\,$ does not use much memory (< 1MB), nor computational power

```
\Rightarrow\, does not give good results neither \left\{ \begin{array}{c} \sim 34\% \mbox{ PER ESTER2} \\ \sim 38\% \mbox{ PER ETAPE} \end{array} \right.
```

- syllabic n-gram language models
 - \Rightarrow most frequent syllables \rightarrow limited-size lexicon & LM (< 10MB)

 $\Rightarrow\,$ performance only 4% worse than the LVCSR $\left\{ \begin{array}{l} \sim 16\%\,\, {\sf PER}\,\, {\sf ESTER2}\\ \sim 22\%\,\, {\sf PER}\,\, {\sf ETAPE} \end{array} \right.$

• word n-gram language model (LVCSR) \Rightarrow gives the best results $\begin{cases} \sim 12\% \text{ PER ESTER2} \\ \sim 18\% \text{ PER ETAPE} \end{cases}$

 $\Rightarrow~$ uses a lot of memory (> 1GB) and computational power

LM = Language model

PER = Phonemes Error Rate

- find the best way of presenting the recognized information
 - * phonemes
 - * syllables
 - * words or combinations

Thank you for your attention !

Comparison of approaches for an efficient phonetic decoding

Luiza Orosanu and Denis Jouvet

{luiza.orosanu, denis.jouvet}@loria.fr

Speech Group, LORIA Inria, Villers-les-Nancy, F-54600, France

August 27, 2013

This study is part of the **RAPSODIE project** (http://erocca.com/rapsodie) and has received support from the "Conseil Régional de Lorraine" and from the "Région Lorraine" (FEDER)