Introduction

Main objective of the RAPSODIE project

- > automatic speech transcription
- * adapted to the needs of deaf or hard of hearing people
 - improve communication between deaf people and their entourage
 - tool of socialization and/or integration in the workplace
- * under real-time operating constraints
 - limited memory & computing power for possible embedded solution

Approach

b target only people with a good knowledge of written French optimization of recognition models (and display format) for this task

Extracting relevant linguistic information

- previous work has compared different linguistic units for phonetic decoding: words, phonemes, syllables \rightarrow syllables offer a good performance
- interviews with deaf people has emphasized the importance of words for understanding the message
- whatever the vocabulary size is, out-of-vocabulary words occur
- compromise: combine words and syllables into a single language model ensure proper recognition of the most frequent words
- provide sequences of syllables for the speech segments out-of-vocabulary

Settings

- Configuration
- \triangleright MFCC acoustic analysis : 32 ms window, 10 ms shift \rightarrow 12 MFCC parameters and the logarithm of the energy per frame $(+ \Delta, \Delta \Delta)$
- SRILM for training the language models
- Sphinx3 for training the gender dependent HMM acoustic models (with 64) Gaussian component mixtures)
- PocketSphinx for speech decoding and confidence measure computation (posterior probability)
- ► Data
- For training the phonetic acoustic models * training sets of ESTER2 and ETAPE & transcribed data of EPAC * about 300 hours of speech and 4 million words
- For training the hybrid language models
- * training sets of ESTER2, ETAPE et EPAC after a forced alignment and transformation into hybrid unit sequences (words+syllables)
- ▷ For performance evaluation: development sets of ESTER2 and ETAPE

Hybrid language models for speech transcription

Threshold on the number of occurrences of words

Retrieving the message carried out by the speech signal

Can the confidence measures identify correct items? correctly recognized words? correctly recognized syllables?

Conclusions

- the hybrid language model is a good compromise
- 0.5, 85% are correctly recognized
- the language model

Future work

- investigate further confidence measures on the syllables units
- ► towards detection of error zones instead of item-based decision

Speech Group, Loria Nancy, France

> among the recognized words which have a confidence measure greater than

evaluations have also shown that the contribution of confidence measures on syllables is relevant only if there is a fairly significant amount of syllables in

{firstName.lastName}@loria.fr